A p-adic approach to local analytic dynamics: analytic conjugacy of analytic maps tangent to the identity
نویسندگان
چکیده
منابع مشابه
A P-adic Approach to Local Analytic Dynamics: Analytic Conjugacy of Analytic Maps Tangent to the Identity
In this note, we consider the question of local analytic equivalence of analytic functions which fix the origin and are tangent to the identity. All mappings and equivalences are considered in the non-archimedean context e.g. all norms can be considered p-adic norms. We show that any two mappings f and g which are formally equivalent are also analytically equivalent. We consider the related que...
متن کاملA P-adic Approach to Local Analytic Dynamics: Analytic Flows and Analytic Maps Tangent to the Identity
In this note, we will consider the question of local equivalence of analytic functions which fix the origin and are tangent to the identity, as well as the question of flows of analytic vector fields. All mappings and equivalences are considered in the non-archimedean context e.g. all norms can be considered p-adic norms. We show that any two mappings f and g which are formally equivalent are a...
متن کاملLocal Conjugacy Classes for Analytic Torus Flows
If a real-analytic flow on the multidimensional torus close enough to linear has a unique rotation vector which satisfies an arithmetical condition Y, then it is analytically conjugate to linear. We show this by proving that the orbit under renormalization of a constant Y vector field attracts all nearby orbits with the same rotation vector.
متن کاملAnalytic Variation of p-adic Abelian Integrals
In Ann. of Math. 121 (1985), 111^168, Coleman de¢nes p-adic Abelian integrals on curves. Given a family of curves X/S, a differential o and two sections s and t, one can de¢ne a function lo on S by lo P R t P s P oP. In this paper, we prove that lo is locally analytic on S. Mathematics Subject Classi¢cations (2000). Primary 14G20; Secondary 14D10, 11G20. Key words. p-adic Abelian integrals...
متن کاملAnalytic P-adic Cell Decomposition and P-adic Integrals
Roughly speaking, the semialgebraic cell decomposition theorem for p-adic numbers describes piecewise the p-adic valuation of p-adic polyno-mials (and more generally of semialgebraic p-adic functions), the pieces being geometrically simple sets, called cells. In this paper we prove a similar cell decomposition theorem to describe piecewise the valuation of analytic functions (and more generally...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de la faculté des sciences de Toulouse Mathématiques
سال: 2009
ISSN: 0240-2963
DOI: 10.5802/afst.1217